Dear Customer:

The City of Luling is pleased to provide you with this 2013 Water Quality Report. We take all possible precautions to safeguard your water supply and hope you will be encouraged to learn about the high quality of water provided to you.

The federal Safe Drinking Water Act (SDWA) requires water utilities to issue an annual report to customers, in addition to other notices that may be required by law. This report explains where your drinking water comes from, what it contains, and the health risks our water testing and treatment are designed to prevent.

We are committed to providing you with information about your water supply because informed customers are our best allies in supporting improvements needed to maintain the highest drinking water standards.

We are proud to report that the Texas Commission on Environmental Quality (TCEQ) has assessed our system and determined that your drinking water, provided by the City of Luling through the Guadalupe-Blanco River Authority’s surface water treatment plant, meets or exceeds all federal and state established water quality standards.

The tables in this report list all substances that were detected in our treated water, and the highest level at which they were detected.

The City of Luling strongly supports the national primary drinking water regulation compliance process. If you are interested in learning more about the water department, water quality, or participating in the decision-making process, there are a number of opportunities available.

Questions about water quality can be answered by calling 830-875-2469 from 8 a.m. - 5 p.m. Monday through Friday. Inquiries about public participation and policy decisions should be directed to the City Manager’s office at 830-875-2481.

The Luling City Council meets every 2nd Thursday of the month at 6:00 p.m. at City Hall and all meetings are open to the public.

En Español

Este informe incluye información importante sobre el agua potable. Si tiene preguntas o comentarios sobre este informe en Español, favor de llamar al tel. 830-875-2469 para hablar con una persona bilingüe en español durante las horas regulares de oficina (8 a.m. - 5 p.m.).
Where Do We Get Our Drinking Water?

The City of Luling receives its water from surface water diverted from the San Marcos River and treated at the GBRA Luling Water Treatment Plant, operated by the Guadalupe-Blanco River Authority (GBRA). Wells provide a supplemental supply. A Source Water Susceptibility Assessment for your drinking water source is currently being updated by TCEQ. This information describes the susceptibility and types of contaminants that may come into contact with your drinking water source based on human activities and natural conditions. The information contained in the assessment allows us to focus source water protection strategies. For more information about your sources of water, please refer to the Source Water Assessment Viewer available at the following URL: http://gis3.tceq.state.tx.us/swav/

What We Found

The following table lists the contaminants that have been found in your drinking water. The columns marked “Highest Level at Any Sampling Point” shows the highest test results during the year. The “Source of Constituent” column shows where this substance usually originates.

DEFINITIONS:

- Maximum Contaminant Level (MCL) - the highest level of the constituent allowed in drinking water. MCLs are set as close to the MCLG as feasible using the best available treatment technology.
- Maximum Contaminant Level Goal (MCLG) - the level of a contaminant in drinking water below which there is no known or expected health risk. MCLGs allow for a margin of safety.
- Action Level (AL) - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.
- NTE - Nephelometric Turbidity Units.
- ppm - parts per million, or milligrams per liter (mg/L).

TABLE I - Test results for the GBRA Luling Water Treatment Plant Source Water

<table>
<thead>
<tr>
<th>Year</th>
<th>Constituent</th>
<th>Average Concentration</th>
<th>Minimum Concentration</th>
<th>Maximum Concentration</th>
<th>Unit of Measure</th>
<th>Source of Constituent</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>Total Organic Carbon</td>
<td>1.35</td>
<td>0.81</td>
<td>3.51</td>
<td>ppm</td>
<td>Naturally occurring; no health effects directly associated.</td>
</tr>
</tbody>
</table>

TABLE II - Test results for the GBRA water supply to Luling (Sampled at the GBRA Luling Water Treatment Plant) Inorganic Contaminants

<table>
<thead>
<tr>
<th>Year</th>
<th>Detected Constituent</th>
<th>Measured Concentration Avg.</th>
<th>Number of Analyses Performed</th>
<th>MCL</th>
<th>MCLG</th>
<th>Unit of Measure</th>
<th>Source of Constituent</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>Arsenic</td>
<td>0.005</td>
<td>1</td>
<td>10</td>
<td>0</td>
<td>ppb</td>
<td>Erosion of natural deposits; removal from agriculture.</td>
</tr>
<tr>
<td>2013</td>
<td>Barium</td>
<td>0.0202</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>ppm</td>
<td>Discharge of drilling waste; erosion of natural deposits.</td>
</tr>
<tr>
<td>2013</td>
<td>Chromium</td>
<td>1.57</td>
<td>1</td>
<td>100</td>
<td>100</td>
<td>ppb</td>
<td>Erosion of natural deposits.</td>
</tr>
<tr>
<td>2013</td>
<td>Fluoride</td>
<td>0.8</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>ppm</td>
<td>Erosion of natural deposits; water additive which prevents scale and rust from forming.</td>
</tr>
<tr>
<td>2013</td>
<td>Nitrate-Nitrogen</td>
<td>1.09</td>
<td>2</td>
<td>10</td>
<td>10</td>
<td>ppm</td>
<td>Runoff from fertilizer use; leaching from septic tanks; treated wastewater effluent; erosion of natural deposits.</td>
</tr>
<tr>
<td>2013</td>
<td>Selenium</td>
<td>3.15</td>
<td>1</td>
<td>50</td>
<td>50</td>
<td>ppm</td>
<td>Discharge from petroleum industry; erosion of natural deposits.</td>
</tr>
</tbody>
</table>

Volatile Organic Contaminants

<table>
<thead>
<tr>
<th>Year</th>
<th>Detected Constituent</th>
<th>Measured Concentration Avg.</th>
<th>Number of Analyses Performed</th>
<th>MCL</th>
<th>MCLG</th>
<th>Unit of Measure</th>
<th>Source of Constituent</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>1,2-Dichlorobenzene</td>
<td>0.088</td>
<td>1</td>
<td>25</td>
<td>75</td>
<td>ppb</td>
<td>Discharge from industrial chemical factories.</td>
</tr>
</tbody>
</table>

TABLE III - Test results for the GBRA water supply to Luling (Sampled in the Luling Distribution System)

<table>
<thead>
<tr>
<th>Year</th>
<th>Disinfectant</th>
<th>Measured Concentration</th>
<th>Minimum Concentration</th>
<th>Maximum Concentration</th>
<th>Action Level</th>
<th>Unit of Measure</th>
<th>Source of Constituent</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>Chloramines</td>
<td>2.78</td>
<td>0.05</td>
<td>0.3</td>
<td>40</td>
<td>ppm</td>
<td>Disinfectant used to control microorganisms.</td>
</tr>
</tbody>
</table>

Violations Table

- Lead and Copper Rule

- The Lead and Copper Rule protects public health by minimizing lead and copper levels in drinking water. Primarily by reducing water corrosivity. Lead and copper enter drinking water mainly from corrosion of lead and copper-containing plumbing materials.

- Violation Type
- Violation Begin
- Violation End
- Violation Explanation

- Lead and Copper Rule Failures

- The Lead and Copper Rule fails to comply with the requirements for lead and copper levels in drinking water. Primarily by reducing water corrosivity. Lead and copper enter drinking water mainly from corrosion of lead and copper-containing plumbing materials.

- Lead and Copper Rule Violation Type
- Lead and Copper Rule Violation Begin
- Lead and Copper Rule Violation End
- Lead and Copper Rule Violation Explanation

Turbidity has no health effects. However, turbidity can interfere with disinfection and provide a medium for microbial growth. Turbidity may indicate the presence of disease-causing organisms. Turbidity is measured in nephelometric turbidity units or NTUs.

- Total Coliform bacteria are used as indicators of water quality problems. Coliforms are water quality indicators that are capable of causing disease. Coliforms bacteria are more common than many disease-causing organisms, therefore, their absence from a water sample is a good indication that the water is microbiologically safe for human consumption.