Disinfection Byproducts

<table>
<thead>
<tr>
<th>Year</th>
<th>Constituent</th>
<th>Measured Concentration</th>
<th>Range</th>
<th>No. of Analyses</th>
<th>MCL</th>
<th>Unit of Measure</th>
<th>Source of Constituent</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>Total Trihalomethanes</td>
<td>37</td>
<td>15.3-97.5</td>
<td>1</td>
<td>80</td>
<td>ppm</td>
<td>Byproduct of drinking water disinfection</td>
</tr>
<tr>
<td>2015</td>
<td>Total Haloacetic acid</td>
<td>13</td>
<td>11-31</td>
<td>1</td>
<td>60</td>
<td>ppm</td>
<td>Byproduct of drinking water disinfection</td>
</tr>
</tbody>
</table>

Turbidity has no health effects. However, turbidity can interfere with disinfection and provide a medium for microbial growth. Turbidity may indicate the presence of disease-causing organisms. These organisms include bacteria, viruses and parasites that can cause symptoms such as nausea, cramps, diarrhea and associated headaches. Turbidity is measured 4 times per day through grab samples and continuously through automatic on-line individual filter turbidity monitors.

<table>
<thead>
<tr>
<th>Year</th>
<th>Constituent</th>
<th>Measured Concentration</th>
<th>Range</th>
<th>No. of Analyses</th>
<th>MCL</th>
<th>Unit of Measure</th>
<th>Source of Constituent</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>Turbidity</td>
<td>0.12</td>
<td>0.01-1.00</td>
<td>100</td>
<td>0.3</td>
<td>NTU</td>
<td>Soil runoff</td>
</tr>
</tbody>
</table>

Secondary and Other Constituents Not Regulated (No associated adverse health effects)

- Total Coliform
- Disinfection Byproducts
- Chlorides
- Sulfates
- Sodium
- Total Dissolved Solids
- pH
- Total Alkalinity
- Total Hardness
- Electric Conductivity
- Dissolved Oxygen
- Groundwater Turbidity
- Total Suspended Solids
- Total Organic Carbon
- Chemical Oxygen Demand
- Biological Oxygen Demand
- Nitrites
- Nitrites
- Nitrates
- Ammonia
- Copper
- Lead
- Mercury
- Arsenic
- Cadmium
- Zinc
- Barium
- Fluoride
- Chloroform
- Trihalomethanes
- Haloacetic Acids
- Haloacetonitriles
- Haloacetamide

In order to ensure that tap water is safe to drink, the USEPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water that must provide the same protection for public health.

All drinking water, (including bottled water), may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- (A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- (B) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- (C) Organic chemical contaminants, including synthetic and volatile organic compounds, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff and septic systems.
- (D) Radioactive contaminants, which can be naturally-occurring or the result of oil and gas production and mining activities.

The Guadalupe-Blanco River Authority (GBRA) is pleased to provide you with this 2015 Water Quality Report. We take all possible precautions to safeguard your water supply and hope you will be encouraged to learn about the high quality of water provided to you.

The federal Safe Drinking Water Act (SDWA) requires water utilities to issue an annual report to customers, in addition to other notices that may be required by law. This report explains where your drinking water comes from, what it contains, and the health risks our water testing and treatment are designed to prevent.

We are committed to providing you with information about your water supply because informed customers are our best allies in supporting improvements needed to maintain the highest drinking water standards.

We are proud to report that the Texas Commission on Environmental Quality (TCEQ) has assessed our system and determined that your drinking water, provided by the Guadalupe-Blanco River Authority water treatment plant, meets or exceeds all federal and state established water quality standards.

The tables in this report list all substances that were detected in our treated water, and the highest level at which they were detected. The tables also reflect the highest levels allowed by federal regulatory agencies. Please read this information carefully and if you have questions, call the numbers listed in this report.
Table I - Test results for the GBRA Lomas Water System (sampled in distribution system)

<table>
<thead>
<tr>
<th>Inorganics Contaminants (source water)</th>
<th>Year</th>
<th>Detected Constituent</th>
<th>Measured Concentration</th>
<th>Number of Analyses</th>
<th>MCL</th>
<th>MCLG</th>
<th>Unit of Measure</th>
<th>Source of Constituent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2012</td>
<td>Barium</td>
<td>0.0297</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>ppm</td>
<td>Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits.</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>Combined Radium</td>
<td>1.0</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>pCi/L</td>
<td>Erosion of natural deposits.</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>Fluoride</td>
<td>0.22</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>ppm</td>
<td>Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizers and aluminum factories.</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>Nitrate</td>
<td>0.18</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td>ppm</td>
<td>Runoff from fertilizer use; leaching from sulfate; erosion of natural deposits.</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>Chromium</td>
<td>0.001</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>ppm</td>
<td>Discharge from steel and polyallum; erosion of natural deposits.</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>Arsenic</td>
<td>0.0005</td>
<td>1</td>
<td>0.01</td>
<td>0.01</td>
<td>ppm</td>
<td>Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines.</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>Selenium</td>
<td>0.002</td>
<td>1</td>
<td>0.05</td>
<td>0.05</td>
<td>ppm</td>
<td>Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines.</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>Tellurium</td>
<td>0.0005</td>
<td>1</td>
<td>0.002</td>
<td>0.005</td>
<td>ppm</td>
<td>Leaching from ore processing site; discharge from electronics; glass and metal factories.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Maximum Residual Disinfection Level</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>Chlorine</td>
<td>1.13</td>
<td>0.64 - 1.74</td>
<td>4</td>
<td>ppm</td>
<td>Disinfectant used to control microbes.</td>
<td></td>
</tr>
</tbody>
</table>

Table II - Test results for the GBRA Lomas Water System (sampled in distribution system)

<table>
<thead>
<tr>
<th>Unregulated Contaminants</th>
<th>Year</th>
<th>Detected Constituent</th>
<th>Measured Concentration</th>
<th>Number of Analyses</th>
<th>MCL</th>
<th>MCLG</th>
<th>Unit of Measure</th>
<th>Source of Constituent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2013</td>
<td>Dichlorodifluoromethane</td>
<td>14.7</td>
<td>4</td>
<td>ppm</td>
<td></td>
<td>Byproduct of drinking water distribution.</td>
<td></td>
</tr>
</tbody>
</table>

Table III - Test results for the GBRA West Canyon Water Treatment Plant (sampled at the GBRA Western Canyon Water Treatment Plant)

<table>
<thead>
<tr>
<th>Inorganics Contaminants (source water)</th>
<th>Year</th>
<th>Detected Constituent</th>
<th>Measured Concentration</th>
<th>Number of Analyses</th>
<th>MCL</th>
<th>MCLG</th>
<th>Unit of Measure</th>
<th>Source of Constituent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2015</td>
<td>Chlorine</td>
<td>0.30</td>
<td>0.0 - 1.0</td>
<td>4</td>
<td>ppm</td>
<td>Disinfectant used to control microbes.</td>
<td></td>
</tr>
</tbody>
</table>

Table IV - Test results for the GBRA West Canyon Water Treatment Plant (sampled at the GBRA Western Canyon Water Treatment Plant)

<table>
<thead>
<tr>
<th>Inorganics Contaminants (source water)</th>
<th>Year</th>
<th>Detected Constituent</th>
<th>Measured Concentration</th>
<th>Number of Analyses</th>
<th>MCL</th>
<th>MCLG</th>
<th>Unit of Measure</th>
<th>Source of Constituent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2015</td>
<td>Chlorine</td>
<td>0.30</td>
<td>0.0 - 1.0</td>
<td>4</td>
<td>ppm</td>
<td>Disinfectant used to control microbes.</td>
<td></td>
</tr>
</tbody>
</table>

Where Do We Get Our Drinking Water?

Lomas Water-Comal Trace receives its water from a water well which pumps from the Trinity aquifer and from Canyon Lake via the GBRA Western Canyon Water Treatment Plant. The water system is operated by the Guadalupe-Blanco River Authority (GBRA).

A Source Water Susceptibility Assessment for your drinking water source(s) is currently being updated by TCEQ. This document describes the susceptibility, and types of contaminants that may come into contact with your drinking water source based on human activities and natural conditions. The information contained in the assessment allows us to focus source water protection strategies. For more information about your source water, please refer to the Source Water Assessment Viewer available at the following URL: http://www.tceq.texas.gov/gis/swaview. Further details about sources and source water assessments are available in Drinking Water Watch at the following URL: http://tceq.texas.gov/dwwatch. Trained operators monitor and test the water, including the addition of fluoride and chlorine, to ensure that our water meets or exceeds all state and federal drinking water standards. The treated water is delivered to the city's water towers and delivered through its distribution system to you. For information on the treatment of your drinking water and water quality protection efforts contact the GBRA Western Canyon Regional Treated Water Plant at (830) 885-2639.

###DEFINITIONS:

- **Maximum Contaminant Level (MCL)** - the level of a contaminant in drinking water below which there is no known or expected health risk. MCLs allow for a margin of safety.
- **Maximum Contaminant Level Goal (MCLG)** - a level of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.
- **NTU** - Nephelometric Turbidity Units.
- **ppm** - parts per million, or micrograms per liter (µg/L).
- **ppb** - parts per billion, or nanograms per liter (ng/L).

Additional guidelines for appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline at 800-426-4791.

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, and drug patients or health care providers. Additional guidelines for appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline at 800-426-4791.

Where Do We Get Our Drinking Water?

Lomas Water-Comal Trace receives its water from a water well which pumps from the Trinity aquifer and from Canyon Lake via the GBRA Western Canyon Water Treatment Plant. The water system is operated by the Guadalupe-Blanco River Authority (GBRA).