Upper San Marcos River Watershed Protection Planning

CRP Meeting

GBRA

March 26, 2015

The Upper San Marcos River

- Impaired for elevated Total Dissolved Solids
- Other pollution concerns include:
 - Total Suspended Solids
 - E. coli
 - Nutrients
- One of the fastest growing regions in the nation
- A unique ecosystem with constant spring flow and eight endangered and threatened species

Partners

Project	2010	2011	2012	2013	2014	2015	2016	2017	Notes
San Marcos Observing System									Meadows Center for Water and the Environment comprehensive study
Spring Lake Underwater Archaeology									Meadows Center for Water and the Environment Underwater Archaeology in Spring Lake
Spring Lake Watershed Characterization									Meadows Center for Water and the Environment analysis of sediment inputs and stakeholder process
San Marcos Watershed Initiative									Meadows Center for Water and the Environment managed Watershed Protection Plan
Water Quality Protection Plan									EAHCP: Protect surface water and groundwater, for habitat for endangered species
Comprehensive Plan									Revised San Marcos comprehensive master plan.
Stormwater Master Plan									Texas state University.
Drainage Master Plan									City plan to address flooding and erosion.
Sessom Creek Study									Sediment removal options to determine the best procedure to remove sand and gravel bar
Texas Pollution Elimination Discharge System									MS4 Regulatory program to control discharges of pollutants into surface waters
Revisions to Construction Standards									Texas State University
Revision to Land Development Code									City of San Marcos
Habitat Conservation Plan									Plan to protect threatened and endangered species associated with the Edwards Aquifer
Texas State Master Plan									Texas State University-San Marcos to review and update of the 2006-2015 Campus Master Plan

SMWI Vision Statement:

"The vision of the San Marcos Watershed Initiative is a healthy watershed that supports a clean, clear, and flowing San Marcos River for the future as it was in the past."

SMWI Stakeholder Committee Structure

Task		Timeframe	
	Year1	Year 2	Year 3
Education & Outreach			
Stakeholder Process			
Data Collection			
Watershed Characterization			
Modeling			
BMP Identification			
Watershed Protection Plan Finalization			
Engaging Stakeholders to Ensure Implementation			

9 Elements of a WPP

Element

- A. Identification of causes & pollution sources
- B. Estimated load reductions needed
- C. BMPs to achieve load reductions
- D. Technical and financial assistance, costs and partners
- E. Education and outreach activities
- F. Schedule
- G. Measureable milestones
- H. Criteria for water quality benchmarks
- I. Monitoring component to evaluate effectiveness

What it means to implement a WPP

Once WPP is completed, we will submit a proposal for funds to implement highest priority WPP activities.

- Acceptance of WPP from EPA, TCEQ and Community
- Partnership between MCWE, TCEQ and Communities to execute tasks
- 60% funding & 40% financial/in-kind match for all activities
- One year lag time in funding (not before Sept, 2016)

Modeling – BASINS & HSPF

-	(Pets & Wildlife)	
+	(Topography)	
	(Soils)	

Receiving Water	Na	P	DO	BOD	Am	eColi	TSS
Sink Creek	?	?	?	?	?	?	?
Sessom	?	?	?	?	?	?	?
Sewell Park	?	?	?	?	?	?	?
Purgatory	?	?	?	?	?	?	?
Willow Creek	?	?	?	?	?	?	?

Example of Resolution-Sessoms Creek Watershed

Table 5.1. EMC estimates for selected NPS constituents (from Baird et al., 1996).

Constituent	Land Use										
	Residential	Commercial	Industrial	Transportation	Cropland	Rangeland	Undev/Open				
Total Nitrogen (mg/L)	1.82	1.34	1.26	1.86	4.40	0.70	1.50				
Total Kjeldahl Nitrogen (mg/L)	1.50	1.10	0.99	1.50	1.7	0.20	0.96				
Nitrate + Nitrite (mg/L as N)	0.23	0.26	0.30	0.56	1.6	0.40	0.54				
Total Phosphorus(mg/L)	0.57	0.32	0.28	0.22	1.3	<0.01	0.12				
Dissolved Phosphorus(mg/L)	0.48	0.11	0.22	0.10			0.03				
Suspended Solids(mg/L)	41.0	55.5	60.5	73.5	107	1.0	70				
Dissolved Solids(mg/L)	134	185	116	194	1225	245.0					
Total Lead (μg/L)	9.0	13.0	15.0	11.0	1.5	5.0	1.52				
Total Copper (µg/L)	15.0	14.5	15.0	11.0	1.5	<10					
Total Zinc (µg/L)	80	180	245	60	16	6.0					
Total Cadmium (µg/L)	0.75	0.96	2.0	<1	1.0	<1.0					
Total Chromium (μg/L)	2.1	10.0	7.0	3.0	<10.0	7.5					
Total Nickel (µg/L)	< 10	11.8	8.3	4.0							
BOD (mg/L)	25.5	23.0	14.0	6.4	4.0	0.5					
COD (mg/L)	49.5	116	45.5	59	-	-	40				
Oil and Grease (mg/L)	1.7	9.0	3.0	0.4							
Fecal Coliform(colonies/100 ml)	20,000	6,900	9,700	53,000		37					
Fecal Strep.(colonies/100 ml)	56,000	18,000	6,100	26,000							

Standards, Screening Levels and Stakeholder Targets

	Mg/L #,								
Parameter	Cl ⁻¹	SO ₄ ⁻²	TDS	DO	TSS (for base flow and average storm events)	Nitrogen nitrate	Phosphorus	Oil and Grease	E. coli (Geomean)
State Standard/ Screening level	50	50	400	6.0	5.0	1.95	.69	N/A	126
Target A (% change Improvement from State Standard/Screening Level)	45 (10%)	45 (10%)	380 (5%)	6.6 (10%)	4.5 (10%)	1.775 (9%)	.621 (10%)	5.0*	113.4 (10%)
Target B (% change Improvement from State Standard/Screening Level)	40 (20%)	40 (20%)	360 (10%)	7.2 (20%)	4.0 (20%)	1.60 (18%)	.55 (20%)	5.0*	101 (20%)

Load Reductions Needed

Table 38. Future Load Reductions needed in Lb/yr and Billion CFUs

Subbasin Number	Parameter	Instream Concentration (mg/L or *CFU/100mL)	Land Based Load (lb/yr or *billion CFU/yr)	Difference in Concentration Required At Standard/Screening Level (mg/L and Geomean *CFU/100mL)	Load Reduction Required At Standard/Screening Level (lb/yr or *billion nean CELL/yr) Load Reduction Required For Target A Level (mg/L and Geomean		Load Reduction Required For Target A Level (lb/yr or *billion CFU/yr)	Difference in concentration Required For Target B Level (mg/L and *CFU/100mL for E. coli)	Load Reduction Required For Target B Level (lb/yr or *billion CFU/yr)
10	E. coli	132.74*	79673.10*	6.74*	4045.61*	19.34*	11608.36*	31.74*	19051.07*
10	Nitrogen	1.64	1509.25	-				0.04	38.97
11	E. coli	140.73*	43597.86*	14.73*	4564.38*	27.33*	8467.73*	39.73*	12309.12*
11	Nitrogen	1.62	769.30					0.02	10.45
12	E. coli	179.76*	188386.30*	53.76*	56342.56*	66.36*	69546.93*	78.76*	82541.71*
12	Nitrogen	1.66	2664.28					0.06	97.20
13	E. coli	165.18*	61613.24*	39.18*	14614.63*	51.78*	19314.49*	64.18*	23939.75*
16	E. coli	104.36*	144929.62*					3.36*	4664.02*
16	Nitrogen	1.64	3492.94					0.04	91.03

Subwatershe d to Use	Management Measure	ВМР	Cost	TSS	Sediment	Z	Bacteria	Ь	Oil & Grease	Water Quantity	Metak	ŏ	COD	Source
13, 23, 24, 33, 35	WQPP	Vegetated Buffers	\$4,500	85 %		25 %		50 %						
10, 16, 20, 24, 25, 27, 31, 34	WQPP	Vegetative Filter Strips	\$7/lin ft seed, \$22/lin ft sod, \$13,000-30,000/acre- \$0.30/ft2 seed, \$0.70/ft2 sod (\$3.20- 7.41/m2), Maintenance- \$350/ac/year Native Filter Strip by EQIP-\$255/ac	1	76 %	41 %	-		i i	1	78 %			https://ww w.casqa.or g/sites/def ault/files/d ownloads/s ocallid- manual- final- 040910.pdf
31	Planning and Managemen t	Water- Intensive Turf Grass Regulation/B an	Ordinance development + Cost to replace grass per household/ft2, Incentives = \$20/100ft2 replaced with natives, Up to ½ staff person salary for project management/enforcem ent	1	1	1	1	1	1	-	-	1	1	
10, 11, 12, 13, 16, 20, 22, 23, 24, 25, 26, 27, 29, 30, 31,	WQPP	Wet Pond	\$1.90 per CF storage	83 %	89 %	22 %	26 93 /4 46 .4	50 %			89 %			https://ww w.casqa.or g/sites/def ault/files/d ownloads/s ocallid-

Thank you!

Mary Van Zant

Watershed Services Associate waters@txstate.edu smwatershedinitiative.org 512-245-7551

