VATER QUALITY '

City of Port Lavaca

Excellence in Water Quality

Dear Customer

The City of Port Lavaca is pleased to provide you with this calendar year 2003 Water Quality Report. We take all possible precautions to safeguard your water supply and hope you will be encouraged to learn about the high quality of water provided to you.

The federal Safe Drinking Water Act (SDWA) requires water utilities to issue an annual report to customers, in addition to other notices that may be required by law. This report explains where your drinking water comes from, what it contains, and the health risks our water testing program and treatment are designed to prevent.

We are committed to providing you with information about your water supply because informed consumers are our best allies in supporting improvements needed to maintain the highest drinking water standards.

We are proud to report that the Texas Commission on Environmental Quality (TCEQ) has assessed our system and determined that your drinking water, provided by the City of Port Lavaca, through the Guadalupe-Blanco River Authority's surface water treatment plant, meets or exceeds all federal and state established water-quality standards.

The tables in this report list all substances that were detected in our treated water during calendar year 2003, and the highest levels at which they were detected. The tables also reflect the highest levels allowed by federal regulatory agencies. Please read this information carefully and if you have questions, call the phone numbers listed in this

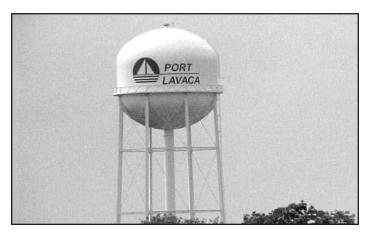
Required Additional Health Information

In order to ensure that tap water is safe to drink, the United States Environmental Protection Agency (EPA) prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water that must provide the same protection for public health.

All drinking water, (including bottled water), may reasonably be expected to contain at least very small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (1-800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturallyoccurring minerals and radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

- (A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and
- (B) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;
- (C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, stormwater runoff, and residential uses;
- (D) Organic chemical contaminants, including synthetic and volatile organics, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff and
- (E) Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.


Many constituents (such as calcium, sodium or iron) which are often found in drinking water, can cause taste, color, and odor problems. The taste, color and odor constituents are called secondary constituents and are regulated by the state of Texas, not EPA. These constituents are not causes for health concerns. Secondary constituents may affect the appearance and taste of your water.

Port Lavaca Water Department 361/552-9793 Ext. 239 GBRA Water Treatment Plant 361/552-9751

En Español

Este reporte incluye la informacion importante sobre su aqua de beber. Para obtener una copia de esta informacion o traducir en Espanol, favor de llamar 361/552-9793 Ext 239 durante las horas regulares de oficina (8 a.m. - 5 p.m.).

The George St. water tower rehabilitation began in December of 2002, and was complete ed in April of 2003. The project consisted of sandblasting and repainting the exterior of the structure and also the sandblasting, painting, and coating of the interior bowl surface. In addition, the City logo was added on the east and west sides of the bowl.

Customer Views Welcome

The City of Port Lavaca strongly supports the national primary drinking water regulations compliance process. If you are interested in learning more about the water department, water quality, or participating in the decision-making process, there are a number of opportunities available.

Questions about water quality can be answered by calling our Customer Service Department at 361/552-9793 Ext. 239 from 8 a.m.-5 p.m., Monday through Friday. Inquiries about public participation and policy decisions should be directed to the City Secretary's office at 361/552-9793 Ext 225.

The Port Lavaca City Council meets every 2nd and 4th Monday at 6:30 p.m. at City Hall and all meetings are open to the public. Our website address is www.portlavaca.org.

Where Do We Get Our Drinking Water and What Happens to It?

The City of Port Lavaca receives its water from the Guadalupe-Blanco River Authority (GBRA). Surface water is diverted from the Guadalupe River, treated at the GBRA surface water treatment plant, and pumped to the City.

Trained operators treat the water by settling and filtering out suspended solids, dirt and other organc particles until the water reaches a crystal-clear quality. A disenfectant compound of chlorine and ammonia is used to destroy any pathogens (germs) present. Fluoride is added to promote dental health. The water is monitored to insure that it meets or exceeds all state and federal drinking water standards. The treated water is delivered to the City's customers through its distribution system.

Special Notice for the ELDERLY, INFANTS, CANCER PATIENTS, people with HIV/AIDS OR OTHER **IMMUNE PROBLEMS:**

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants, can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers.

The EPA and the Center for Disease Control and Prevention (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the EPA's Safe Drinking Water Hotline (1-800-426-4791).

What We Found

The following tables contain all of the chemical constituents that have been found in your drinking water. EPA requires water systems to test for more than 90 constituents. The column marked "Highest Level at Any Sampling Point" shows the highest test results during the year. The "Source of Constituent" column shows where this substance usually originates.

<u>DEFINITIONS</u>:

Maximum Contaminant Level (MCL) - the highest level of a contaminant allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology, Maximum Contaminant Level Goal (MCLG) - the level of a contaminant in drinking water below which there is no known or expected health risk. MCLGs allow for a margin of safety.

Action Level - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

NTU = Nephelometric Turbidity Units, a measure of clarity.

ppm = parts per million, or milligrams per liter (mg/L).

 $\begin{aligned} &\textbf{ppb} = \text{parts per billion, or micrograms per liter } (\mu g/L). \\ &\textbf{NA} = MCL \text{ not applicable or not regulated.} \\ &\textbf{pCi/L} = \text{Picocuries per liter, a measure of radioactivity.} \end{aligned}$

TABLE I - Tested at GBRA surface water treatment plant

Year	Detected Constituent	Highest Level at Any Sampling Point	Number of Analyses	MCL	MCLG	Unit of Measure	Source of Constituent
2002	Barium	0.074	1	2	2	ppm	Discharge of drilling wastes; erosion of natural deposits.
2002	Chromium	1.49	1	100	100	ppb	Discharge from steel and pulp mills; erosion of natural deposits.
2003	Fluoride	0.99	2	4	4	ppm	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories.
2003	Nitrate	0.22	2	10	10	ppm	Runoff from fertilizer use; leaching from septic tanks; treated wastewater effluent; erosion of natural deposits.
1996	Gross Beta Emitters	7.3	1	50	0	pCi/L	Decay of mineral and man-made deposits.

Organics

Year	Detected Constituent	Concentration Detected	Number of Analyses	MCL	MCLG	Unit of Measure	Source of Constituent
2003	Atrazine	0.33	1	3	3	ppb	Runoff from herbicide used on row crops.

Unregulated Contaminants

Year	Constituent	Average of Analyses	Range of Detected Levels	Reason for Monitoring
2003	Chloroform	11.2	10.8 - 11.6	Unregulated contaminant monitoring helps EPA to determine where certain contaminants occur and whether it needs to regulate those contaminates.
2003	Bromoform	1.65	1.6 - 1.7	Same as above.
2003	Bromodichloromethane	18.8	18.1 - 19.5	Same as above.
2003	Chlorodibromomethane	14.05	13.7 - 14.4	Same as above.

Turbidity

Turbidity has no health effects. However, turbidity can interfere with disinfection and provide a medium for microbial growth. Turbidity may indicate the presence of disease-causing organisms. These organisms include bacteria, viruses and parasites that can cause symptoms such as nausea, cramps, diarrhea and associated headaches. Turbidity is measured every 15 minutes.

Year	Detected Constituent	Highest Single Measurement	Lowest Monthly % of Samples Meeting Limits	Turbidi Limits	ty Unit of Measure	Source of Constituent
2003	Turbidity	0.23	100	0.3	NTU	Organic particles.
2003	Total Coliform	NOT DETECTED		2003	Fecal Coliform	NOT DETECTED

TABLE II - Tested in City of Port Lavaca distribution system at home taps

Trihalomethanes (THM)

Year	Detected Constituent	Average of All Sampling Points	Range of Detected Levels	MCL	MCLG	Unit of Measure	Source of Constituent
2003	Total Trihalomethanes	55.5	40.62 - 68.2	80	0	ppb	By-product of drinking water chlorination.

Haloacetic Acids

Year	Detected Constituent	Average of All Sampling Points	Range of Detcted Levels	MCL	MCLG	Unit of Measure	Source of Constituent
2003	Total Haloacetic Acids	35.6	18.7 - 35.6	60	0	ppb	By-product of drinking water chlorination

Lead and Copper (Analyzed every 3 years; not sampled in 2003)

Year	Detected Constituent	The 90th Percentile	Number of Sites Exceeding Action Level	Action Level	Unit of Measure	Source of Constituent
2001	Lead	5.00	0	15	ppb	Corrosion of household plumbing systems; erosion of natural deposits.
2001	Copper	0.285	0	1.3	ppm	Corrosion of household plumbing systems; erosion of natural deposits.

Coliforms

Coliform bacteria are used as indicators of microbial contamination of drinking water because they are easily detected and found in the digestive tract of warm-blooded animals. With some exceptions, coliforms are not them selves disease producers, but often found in association with other microbes that are capable of causing disease. Coliform bacteria are more hardy than many disease-causing organisms; therefore, their absence from water is a good indication that the water is bacteriologically safe for human consumption. Fecal coliform bacteria (mostly *E.coli*) are a portion of the coliform bacteria group originating in the intestinal tract of warm-blooded animals that passes into the environment as feces. Fecal coliform bacteria are often used as indicators of the fecal contamination of a domestic water supply.

Year	Detected Constituent	Highest Monthly Number of Positive Samples	MCL	Unit of Measure	Source of Constituent
2003 *Two or r	Total Coliform/ Fecal Coliform nore "coliform presen	1 t" samples in any single month.	*	Presence/ Absence	Naturally present in the environment.