WATER QUALITY '06

CALHOUN COUNTY RURAL WATER SUPPLY OF GBRA

Excellence in Water Quality

GBRA Water Treatment Plant, Box 146, Port Lavaca, Texas 77979 Tel:361/552-9751

En Español

Este reporte incluye la informacion importante sobre su aqua de beber. Si tiene preguntas o comentarios sobre este informe en Espanol, favor de llamar 361/552-9751 para hablar con una persona bilingue in espanol durante las horas regulares de oficina (8 a.m. - 5 p.m.).

Special Notice for the ELDERLY, INFANTS, CANCER PATIENTS, people with HIV/AIDS OR OTHER IMMUNE PROBLEMS:

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants, can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers.

The United States Environmental Protection Agency (EPA) and the Center for Disease Control and Prevention (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the EPA's Safe Drinking Water Hotline (1-800-426-4791).

Dear Customer:

The Guadalupe-Blanco River Authority (GBRA) is pleased to provide you with this calendar year 2006 Water Quality Report. We hope you will be encouraged to learn about the high quality of drinking water produced and distributed for you by the professional staff at GBRA.

The federal Safe Drinking Water Act (SDWA) requires water utilities to issue an annual report to customers that explains where your drinking water comes from, what it contains, and the health risks that our water testing and treatment program are designed to prevent.

The Texas Commission on Environmental Quality (TCEQ) inspects the GBRA system on an annual basis, as required by law. Your drinking water from our surface water treatment plant meets or exceeds all federal and state established water quality standards. The tables in this report list all substances that were detected in our treated water, and the highest levels at which they were detected water, and the highest levels at which they were detected water, and the highest levels at which they were detected water, and the highest levels at which they were detected regulatory agencies.

Please read this information carefully and if you have questions, please do not hesitate to call the phone numbers listed in this report.

Required Additional Health Information

In order to ensure that tap water is safe to drink, the United States Environmental Protection Agency (EPA) prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water that must provide the same protection for public health.

All drinking water, (including bottled water), may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (1-800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be presented and other presences of animals or from human activity.

(A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife;

(B) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

(C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, stormwater runoff, and residential

(D) Organic chemical contaminants, including synthetic and volatile organics, which are by-products of industrial processes and perform production, and can also come from asset stations, urban stormwater runoff and septic systems:

(E) Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

Many constituents (such as calcium, sodium or iron) which are often found in drinking water, can cause taste, color, and odor constituents are called secondary constituents and are regulated by the state of Texas, not EPA. These constituents are not causes for health concerns. Secondary constituents may affect the appearance and taste of your

TABLE II Continued

(MHT) sənadəmotahirT

		Not Detected			E. coli	Not Detected	ilorm	ilo Slato I
·u	By-product of drinking water chlorination	qdd	0	09	4.88-71	8.92	Total Haloacetic Acids	9007
	Source of Constituent	To tinU oruseoM	WCFG	WCF	Range of Detected Levels	To egrievA gnilqms2 IIA etnio9	Detected Constituent	Year
							(SAAH) sbioA o	Haloaceti
·u	By-product of drinking water chlorination	qdd	0	08	1.78-2.22	<i>ħ</i> ' <i>ħ</i> L	Total Trihalomethanes	9007
	Source of Constituent	To tinU orusesM	WCFG	WCF	Range of Detected Levels	Average of Ball Sampling Points	Detected Constituent	Year

Secondary and Other Unregulated Constituents

Total dissolved mineral constituents in water.	uıdd	1000	Ī	5443	Total Dissolved Solids	7000
Naturally occurring calcium.	uıdd	VΝ	Ī	791	Total Hardness as CaCO3	2002
Total dissolved mineral constituents in water.	uıdd	1000	Ī	Ett	Total Dissolved Solids	9007
Naturally occurring soluble mineral salts.	uıdd	VΝ	Í	681	Total Alkalinity as CaCO3	9007
byproduct; byproduct of oil field activity.		***	•	007		,000
Naturally occurring; common industrial	uıdd	300	ī	88	Sulfate	9007
field activity.		000		00	7 31 3	7000
Erosion of natural deposits. Byproduct of oil	uıdd	٧N	ī	72	muiboS	7007
Measure of corrosivity of water.	sjiun	/	į.	LL.T	Hq	2002
Abundant naturally occurring element.	uidd	ΑΝ	Į. T	8.41	Magnesium	7007
Naturally occurring calcium and magnesium.	udd	AN AN	Į T	497 197	Hardness as Ca/Mg	
preseratives.	aaaa	VIN	ı	L9C	pM/eD se seechreH	9000
sion of natural deposits; leaching from wood						
	wdd	1.7AT	т	FC0:0	Copper	7007
Corrosion of household plumbing systems; ero-	ttida	ΨN	l	450.0	Copper	2002
activity.						
water purification; by-product of oil field	44	007		0.4	*********	000=
Abundant naturally occurring element. Used in	uudd	300	ļ	82	Chloride	
Abundant naturally occurring element.	udd	ΨN	l	6.99	Calcium	2002
Corrosion of carbonate rocks such as limestone.	uudd	ΨN	I	681	Bicarbonate	
Abundant naturally occurring element.	qdd	95	Ţ	1 £0.0	munimulA	2002
amenata	2111117		coc (mus s	нопринасно		
Measure	timi.1	(mpuosac	Analyses	Concentration	anananana.	INO I
Source of Constituent	ìo siinU	Secondary	Number of	Measured	Constituent	Year
					iated adverse health effects	No assoc

Vational Primary Drinking Water Regulation Compliance

This report was prepared by the Guadalupe-Blanco River Authority. Please contact GBRA at 361/552-9751 or through their website at www.gbra.org. for further information. Water quality data for community water systems throughout the United States is available at www.waterdata.com.

Disinfection Byproducts

Byproduct of drinking water disinfection. Byproduct of drinking water disinfection.	qdd qdd	08 09	8.93 8.111	2.01 9.74	22.25 274.87	Total Haloacetic Acida Total Trihalomethanes	7000 7000
Source of Constituent	To tinU Measure		Maximum MCL Level	Minimum Level	Average Level	Constituent	Year

isms. These organisms include bacteria, viruses and parasites that can cause symptoms such as nausea, cramps, diarrhea and associated headaches. Turbidity is measured every 15 minutes Turbidity has no health effects. However, turbidity can interfere with disinfection and provide a medium for microbial growth. Turbidity may indicate the presence of disease-causing organ-

L	sedoraim lortnoa at beau trictaetriisid	uuu	V		0 7-0 1	LS E	Chloramines	9006
	Source of Constituent Measure	ìo tinU	WCFG	WKDF	Range of Detects (low-high)	teafigiH Average	Constituent	Year
							ant Residuals	stoofnisi(
	NTU Organic particles.	€.0		100		22.0	Yıibidıty	9007
	Unit of Source of Constituent Measure	Turbidity Limits		Lowest Monthly % of Samples Meeting Limits		Highest Sing Measuremen	Constituent	Деяг

Total Organic Carbon (TOC) DISIDIECTARE USED TO CONTROL MICTODES.

TOC required by TCEQ to be removed.	he percent of	rocess divided by t	the treatment p	OC removal by	Ratio is the percent of 7	Removal I
NA Same as above.	VN wdd	2.2567 1.817667	2.1 820.1	44. E 27. E	Drinking Water TOC Removal Ratio	2005 2006
Naturally occuring. There are no health effects directly associated	uıdd	3764.8	2.05	94.8	Source Water TOC	9007
Source of Constituent	To finU Measure	Average Measurement	Lowest Measurement	Highest Measurement	Detected Constituent	Year

Source Water Assessment

Report. For more information on source water assessments and protection efforts at our system contact the Guadalupe-Blanco River Authority at 361-552-9751. for your water system is based on this susceptibility and previous sample data. Any detections of these contaminants will be found in this Consumer Confidence TCEQ completed an assessment of your source water and results indicate that some of our sources are susceptible to certain contaminants. The sampling requirements

Cyptosporidium Monitoring Information

water. Bimonthly sampling of the Guadalupe River, the source water for the GBRA Pt. Lavaca Water Treatment Plant, began in October 2006 and will continue until capable of causing cryptosporidiosis, an abdominal infection causing nausea, vomiting, diarrhea and abdominal cramps that may occur after ingestion of contaminated water. Although treatment plant filters remove Cryptosporidium, filters cannot guarantee 100% removal nor can the analysis determine if the organisms are alive and will be used to determine whether additional treatment is required and to refine the relationship established between E.coli and Cyptosporidium levels in the source plant) for Cryptosporidium, turbidity and E.coli. Cryptosporidium is a microbial pathogen that may be found in water contaminated with feces. Monitoring results The EPA Long Term 2 Enhanced Surface Water Treatment Rule (LT2 Rule) requires that water treatment plants monitor the source water (water prior to treatment

September 2008. The following table summarizes the source water data collected in 2006.

				*veometric mean
UTN	0.28-1.81	Lt	9	tibidiuT
Most probable number	8.0-52.0	*81	9	E. coli
Oocysts per liter	0	1.0>	9	Cryptosporidium
siinU	Range of Analysis	Меап	ìo .oV sisylsnA	Analysis of Source Water Prior to Treatment

2006 Chlorine Residual 2.39

TABLE II - Test results for GBRA water supply to Calhoun County Rural Water customers (As sampled in the E. coli Not Detected Total Coliform Not Detected

customer distribution system)

Unit of Source of Constituent	WKDFG	MKDF	mumixsM m	uminiM əgsrəvA	Disinfectant	Year
				nt Level	ı Residual Disinfecta	numixsM
Corrosion of household plumbing systems; erosion of natural deposits.	uıdd	٤	I 0	180.0	Copper	6661
Corrosion of household plumbing systems; erosion of natural deposits.	qdd	ς	0 1	2.70	Pead	6661
Source of Constituent	Unit of Measure	ction Level	Number of Sites Exceeding Action	The 90th Percentile	Detected Constituent	Year
			учегу 9 уеагя)	n for 2006 - analyzed o	Copper (None take	Lead and
Decay of natural and man-made deposits.	J\iDq	0 0		3.2 n for 2006 - analyzed o	Gross Beta	2004
Erosion of natural deposits. Decay of natural and man-made deposits.	J\i⊃q J\i⊃q	0 0 0 \$	s I			
			of Analyses I 5		Gross Beta	7007

3.6

Level

wdd

Disinfectant used to control microbes.

Customer Views Welcome

Membership meeting hosted each January by GBRA. GBRA strongly supports the national primary drinking water regulations compliance process. Questions about water quality may be answered by calling 361/552-9751 or writing to us at Box 146, Port Lavaca, Texas 77979. You are also encouraged to attend the Rural Water Annual

Where Do We Get Our Drinking Water and What Happens to It?

tal-clear quality. A disinfectant compound of chlorine and ammonia is used to destroy any pathogens (germs) present. Fluoride is added to promote There, licensed operators treat the water by settling and filtering out suspended solids, dirt, and other organic particles until the water reaches a crys-Surface water (water from a lake, pond, river or stream) is diverted from the Guadalupe River and pumped to the GBRA Water Treatment Plant.

What We Found

where this substance usually originates. stituents. The column marked "Highest Level at Any Sampling Point" shows the highest test results during the year. The "Source of Constituent" column shows The following table contains all of the chemical constituents that have been found in your drinking water. EPA requires water systems to test for more than 97 con-

best available treatment technology.

Maximum Contaminant Level (MCL) - the highest level of a contaminant allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the

MCLGs allow for a margin of safety. Maximum Contaminant Level Goal (MCLG) - the level of a contaminant allowed in drinking water below which there is no known or expected health risk.

Action Level - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. Maximum Residual Disinfectant Level (MRDL) - the highest concentration of disinfectant residual allowed in the distribution system.

NTU = Nephelometric Turbidity Units, a measure of clarity.

ppm = parts per million, or milligrams per liter (mg/L).

 $\mathbf{ppb} = \text{parts per billion}$, or micrograms per liter ($\mu g/L$).

pCi/L = picocuries per liter, a measure of radioactivity.

UCMR = Unregulated Contaminants Monitoring Rule. \overline{N} applicable. \overline{N} applicable.

GBRA Water Treatment Plant) TABLE I - Test results for GBRA water supply to Calhoun County Rural Water customers (As sampled at the

Source of Constituent	ìo iinU	MCFG	MCL	Mumber	Concentration	Detected	Year
							esinagyO
Decay of mineral and man-made deposits.	J\iDq	0	05	I	8.4	Gross Beta Emitters	7007
Runoff from fertilizer use; leaching from septic tanks; treated wastewater effluent; erosion of natural deposits.	wdd	10	10	Ī	₽ £.1	Vitrate	9007
Erosion of natural deposits; water additive which promotes strong teeth; runoff from fertilizer use.	wdd	<i>7</i>	u	I	27.0	Fluoride	9007
Discharge from steel and pulp mills; erosion of nat- ural deposits.	qdd	100	100	I	6 1 .1	Chromium	7007
Discharge of drilling wastes; erosion of natural deposits.	wdd	7	7	I	<i>₽</i> ∠0.0	muinsA	7007
Source of Constituent	Unit of Measure	WCFG	WCF	Number of Analyses	Highest Level at Any Sampling Point	Detected Constituent	Year
						So	погузин

Runoff from herbicide used on row crops.

Detected Constituent

Unregulated Contaminants

2006 Atrazine

shown in the table below. This data may also be found on EPA's website at http://www.epa.gov/safewater/data/ncod.html, or you can call the Safe Drinking Water Hotline at 1-800-426-4710-We participated in gathering data under UCMR in order to assist EPA in determining the occurrence of possible drinking water contaminants. If any unregulated contaminants were detected, they are

Sате аs above.	7.91-4.8	12.65	Bromochloroacetic acid	9007
Same as above.	7.0-12.6	10.125	Dibromoacetic acid	7000
Same as above.	ΠN	ND	Bromoacetic acid	9007
Same as above.	7.6-UN	1.4	Trichloroacetic acid	9007
Зате аз ароуе.	ND-24.9	27.11	Dichloroacetic acid	9007
Monitoring helps EPA determine where certain contaminants occur and the need for regulation.	ND-22.6	55.6	Chloroacetic acid	Haloacetic Acids 2002
Зате аз ароуе.	20.3-39.76	297.15	Chlorodibromomethane	9007
Same as above.	7.14-1.21	10.62	Bromodichloromethane	9007
Same as above.	6£.8-7.2	820.7	Bromoform	9007
Monitoring contaminants helps EPA to determine where certain contaminants occur and whether it needs to regulate those contaminants.	S.82-4.8	849.21	Chloroform	Trihalomethanes 2005
Reason for Monitoring	Range of Detected Levels	IIA 10 əgsrəvA stnio9 gnilqms2	Constituent	Деяг