

Guadalupe-Blanco River Authority

Your Trusted Water Resource

Guadalupe River Habitat Conservation Plan THIRD PUBLIC STAKEHOLDER MEETING September 28, 2023

GRHCP Information and Updates Bloomington

IVO

Port Lavaca

Seadrift

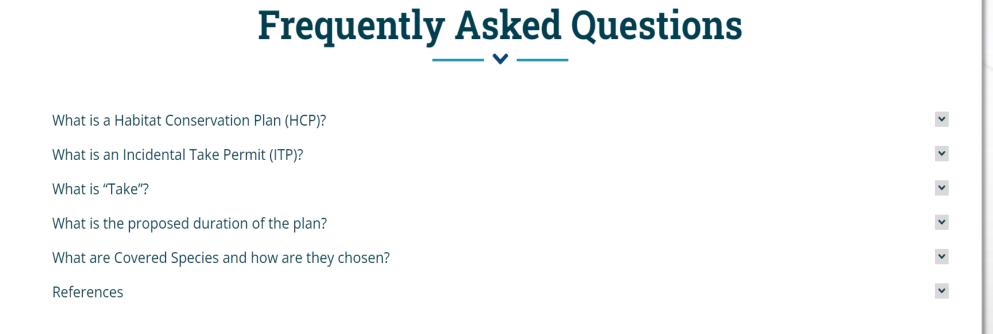
Austwell

Antonio Bay

Long Mott

New GRHCP Project Staff

Daniel Large, HCP Policy Director, GBRA



Lucas Bare, ICF Project Manager

Frequently Asked Questions (FAQs)

GBRA.ORG

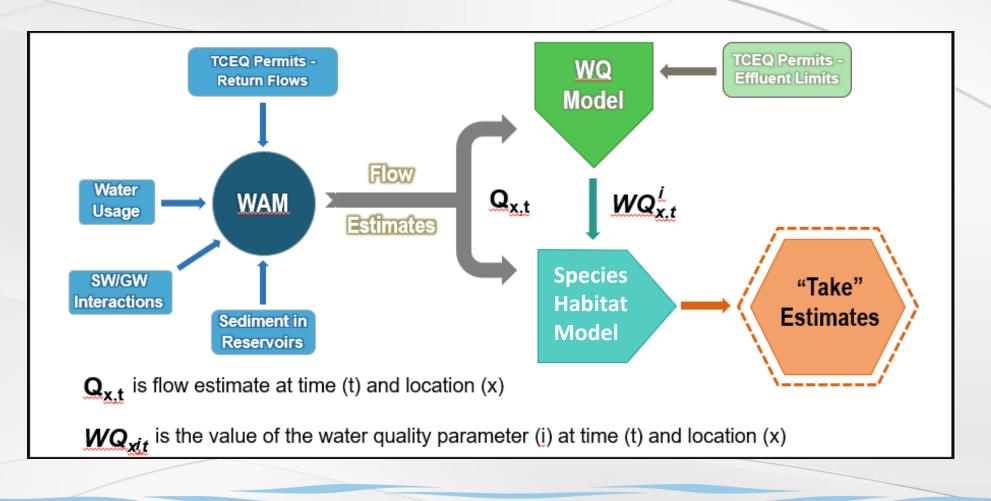
www.gbra.org/environmental/habitat-conservation-plan/

CONDITIONS~ OPERATIONS~ ENVIRONMENTAL~

Documonte

Available Online Documents

DATE	PRESS RELEASE						
July 2021	GBRA to Develop Habitat Conservation Plan for the Guadalupe River						
DATE	TECHNICAL MEMORANDUM						
April 14, 2023	Methods/Models For Determining Species/Habitat Impacts – Impact Assessment For Covered Mussels Species						
December 1, 2022	Climate Change Information and Recommended Approaches						
October 14, 2022	Hydrological Modeling Needs						
October 2022	TAG Review Flowchart						
September 9, 2022	Covered Activities for the Guadalupe River Habitat Conservation Plan and Incidental Take Permit						
August 1, 2022	Second Party Take: Options for Coverage and Next Steps for Initiating the Stakeholder						
July 21, 2022	TAG Review Process						
July 19, 2022	TAG Purpose Overview						
January 17, 2022	Proposed Covered Species for the Guadalupe River Habitat Conservation Plan and Incidental Take Permit						
December 17, 2021	Proposed Plan Area for the Guadalupe River Habitat Conservation Plan and Incidental Take Permit						
December 17, 2021	Permit Term for the Guadalupe River Habitat Conservation Plan and Incidental Take Permit						
October 4, 2021	GRHC Project Goals						

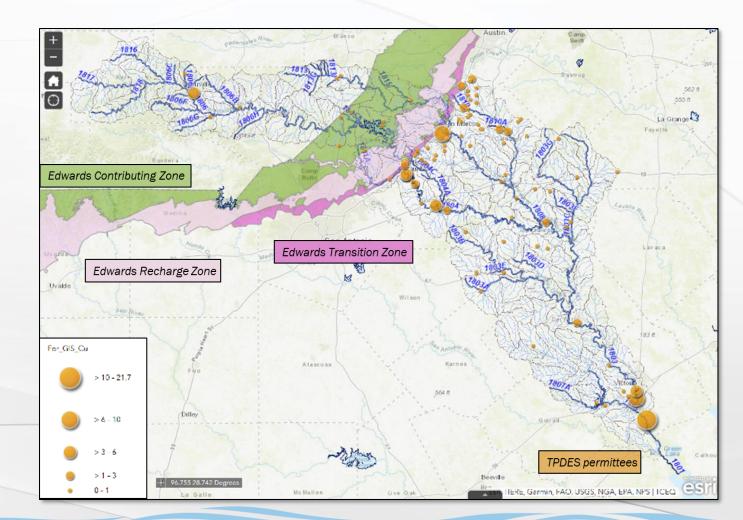


Guadalupe-Blanco River Authority

Water Availability Modeling

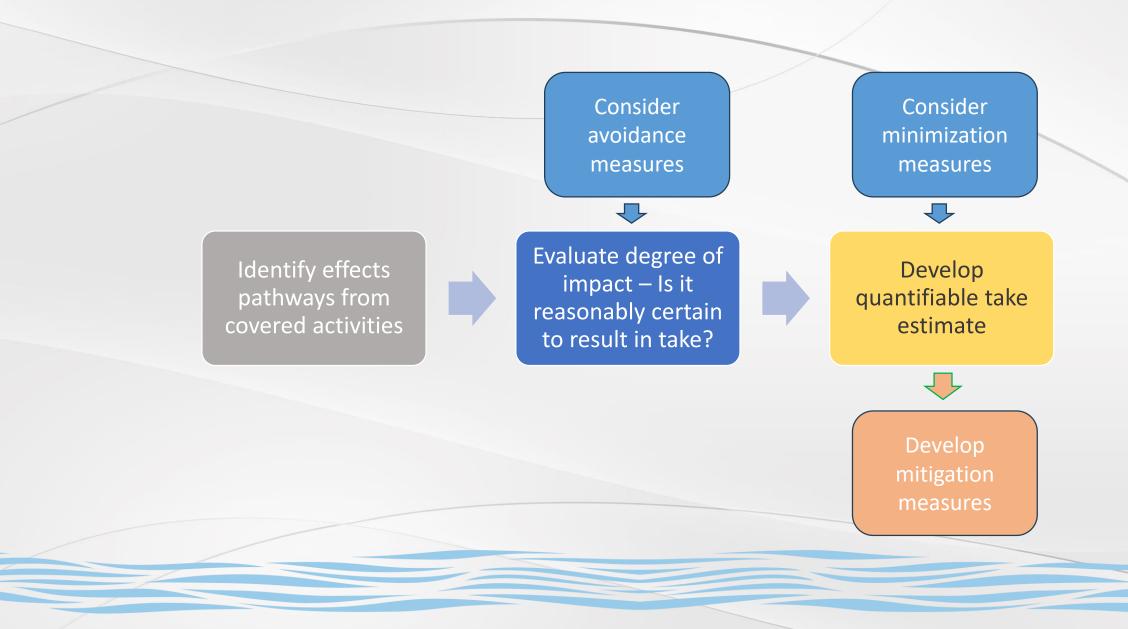
GRHCP Hydrologic Modeling Approach

Surface Water Modeling Scenarios


			Flow and Related	Covered Activities (GBRA and 2 nd Parties)		Other Entities		Large Dams or Other	Conservation	Climate
Scenario		Scenario Purpose	Attributes	Water Use & Operations	Return Flows	Water Use & Operations	Return Flows	Existing Infrastructure/ Sediment Conditions	Measures	Change
In	itial Scenarios	1								
1	Reference	Baseline for HCP impact analysis	Current water management in the basin without GBRA & 2 nd Parties Covered Activities	No	No	Yes/Current	Yes/Current	Yes/ Current Sediment Conditions for All Large Reservoirs ^(a)	No	No
2a	Covered Activities	Impact Analysis and Take Estimates	Current water management in the basin with future GBRA & 2 nd Parties Covered Activities (full water rights)	Yes/Future (full water rights)	Yes/Future (full water rights)	Yes/Current	Yes/Current	Yes/Current Sediment Conditions for All Large Reservoirs Except Canyon & 2 nd Party Reservoirs ^(b)	No	No
2b	Future Usage	Contextualize Impacts based on Future Usage	Future water management in the basin with future GBRA & 2 nd Parties Covered Activities (projected usage)	Yes/Future (Region L+) ^e	Yes/Future (Region L+)	Yes/Future (Region L+)	Yes/Future (Region L+)	Yes/Future Projected Conditions	No	No
Su	bsequent Scenario	os								
3	Climate Change	Assess feasibility of future mitigation efforts	Use future evaporation, precipitation, and streamflow projections (TBD)	Yes/Future	Yes/Future	Yes/Future	Yes/Future	Yes/Future	No	Yes
4	Conservation Strategy	Assess extent to which conservation measures mitigate take	Proposed future operations plus conservation flows and restoration	Yes/Future	Yes/Future	Yes/Future	Yes/Future	Yes/Future (Other than infrastructure to be removed – e.g., dams removed for HCP)	Yes	TBC
5	Conservation Strategy with Alternatives ^(c)	Assess extent to which alternative conservation measures mitigate take	Proposed future operations plus conservation flows and restoration for alt. conservation strategies	Yes/Future	Yes/Future	Yes/Future	Yes/Future	Yes/Future (Other than infrastructure to be removed – e.g., dams removed for HCP)	Yes	TBC

TCEQ QUAL-TX Models

- QUAL-TX models
 - Used by TCEQ in making waterquality permit decisions
- Typically, TCEQ performs QUAL-TX modeling for all permittees
- GBRA is modifying the protocol to focus on ammonia and dissolved oxygen


Species Impact Methodologies

GRHCP Covered Species

Impact Assessment Framework

GBRA.ORG

GRHCP Species

GBRA.ORG

Covered Species

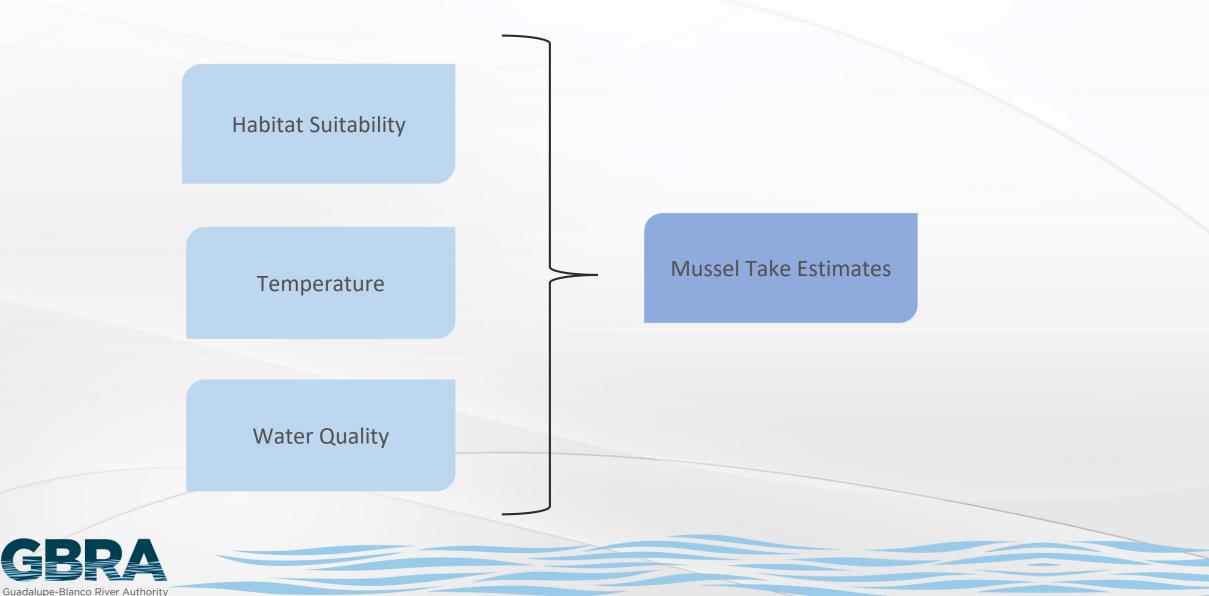
- Coastal Birds
 - Whooping crane
 - Eastern black rail
- Freshwater mussels
 - Guadalupe fatmucket
 - Guadalupe orb
 - False spike
- Fish
 - Guadalupe darter

Avoidance Species

- Golden-cheeked warbler
- Monarch butterfly

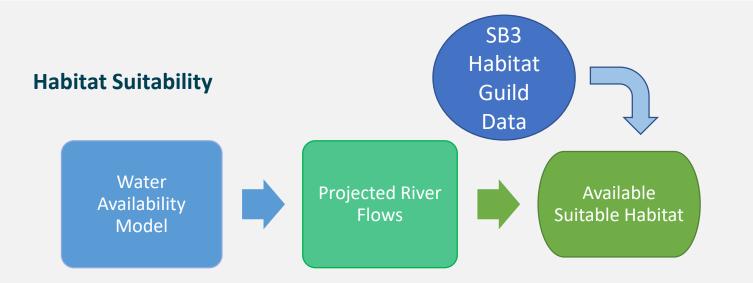
Considered but Not Covered

- Springs-associated Salamanders
 - Fern bank salamander
 - Cascade Caverns salamander
 - Undescribed *Eurycea* sp.
- Shorebirds
 - Red knot
 - Piping plover
- Fish
 - Roundnose minnow
 - Guadalupe bass
 - American eel
 - Burrhead chub
- Mammals
 - Jaguarundi

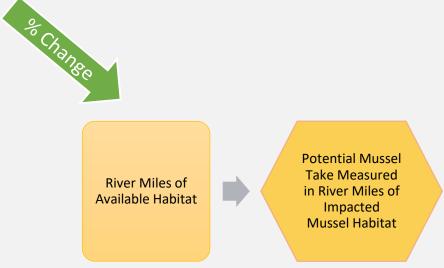


Mussels

Mussel Impact Estimation


Habitat as a Surrogate for Estimating Take

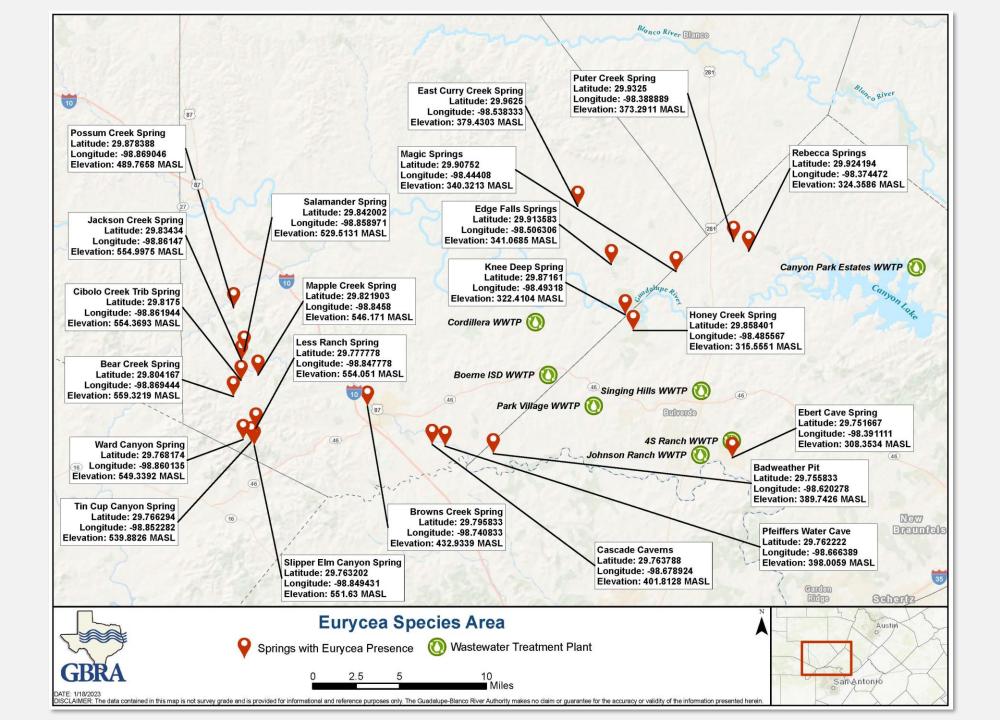
- Mussel detection probabilities are low, with clumped distributions
- "Take can be quantified in a number of ways, such as numbers of affected individuals, nesting groups, or a surrogate measure like acres of habitat or stream miles" (USFWS ITP and HCP Processing Handbook, 2016, p. 8-2)
- Occupied Habitat (measured in river miles)
 - Assumes positive relationship between occupied stream miles and mussel population
 - Consistent with USFWS methods (SSA) and other recent Texas efforts (BRA CCAA)



GBRA.ORG

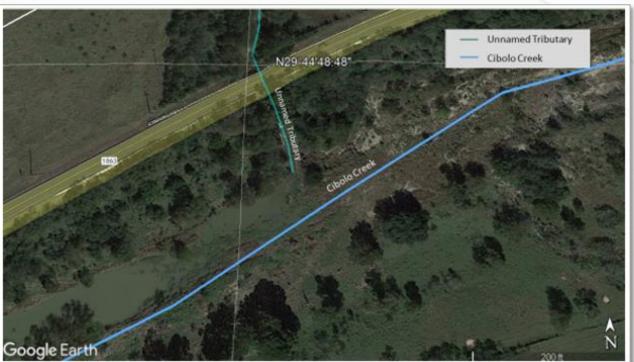
Methodology for Estimating Mussel Take

Salamanders

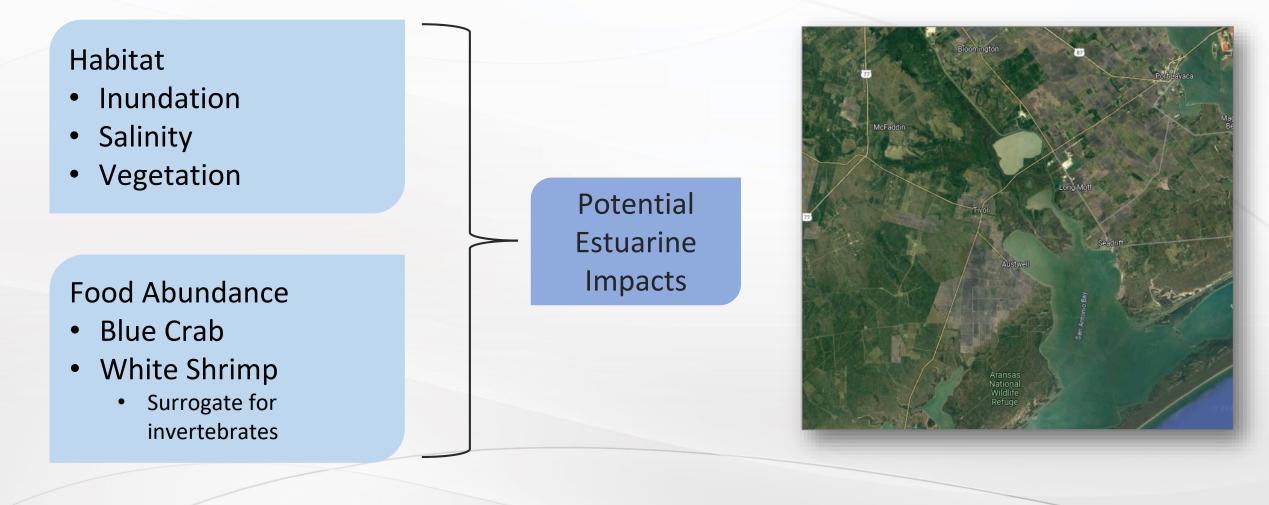


Salamander Impact Estimation for GBRA Facilities

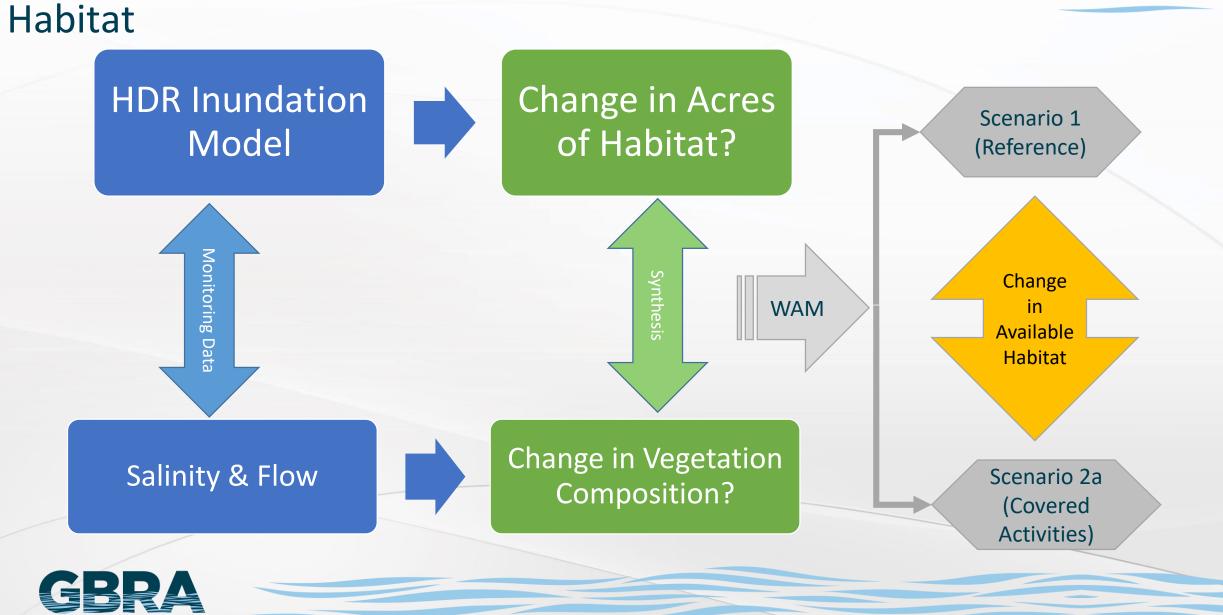
- Elevation of wastewater treatment facilities (WWTFs) vs. springs/karst
- Hydrologic barrier between WWTFs and springs/karst
- Receiving stream (intermittent or perennial)
- Effluent discharge method (land application or direct discharge)
- Distance between WWTFs and river/karst feature
- Literature on water quality impacts to Eurycea


Potential Salamander Impacts

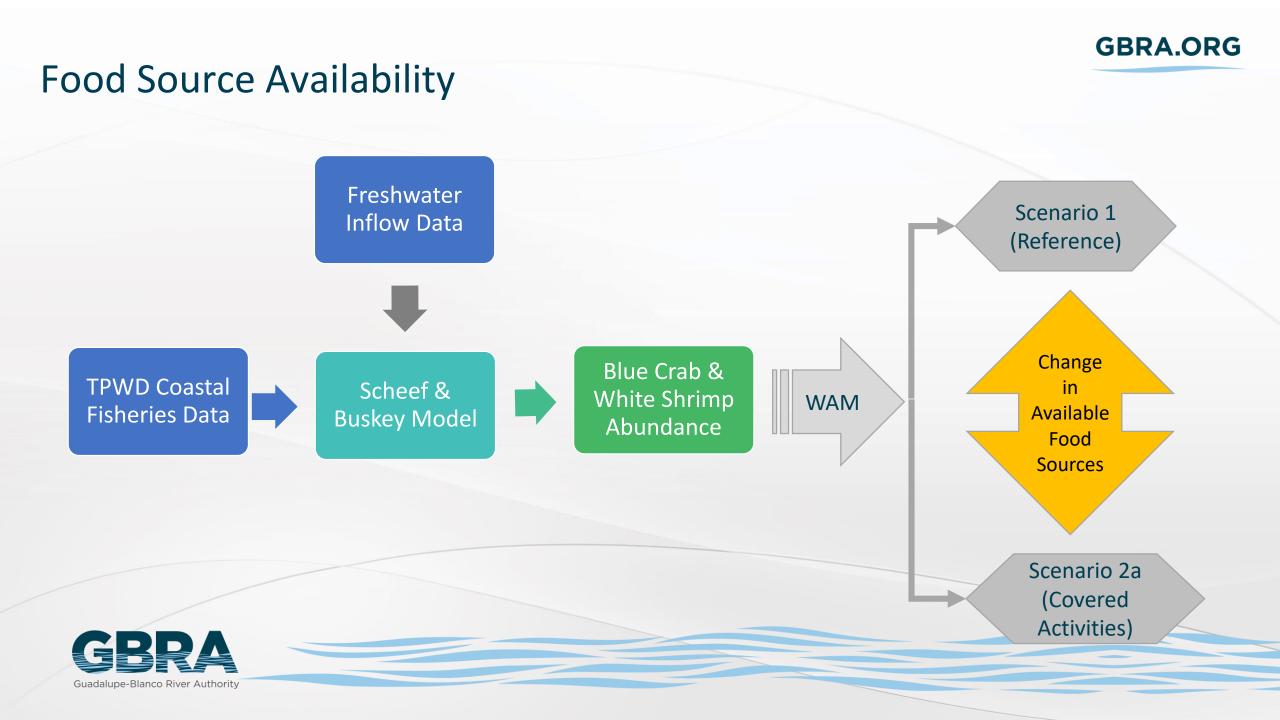
Karst feature analysis - Johnson Ranch WWTF


Conclusion: GBRA and Second Party covered activities are not reasonably certain to cause take of spring-associated salamanders

Guadalupe-Blanco River Authority


Whooping Crane and Eastern Black Rail

Whooping Crane & Eastern Black Rail Impact Estimation

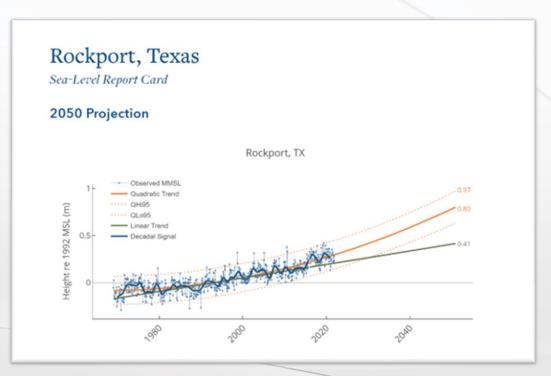


GBRA.ORG

Guadalupe-Blanco River Authority

Whooping Crane & Eastern Black Rail Take Assessment

Climate Change


Addressing Climate Change in HCPs: Overview

- What's required and what's recommended?
 - To meet issuance criteria, USFWS must assess the impact of the taking with consideration of likely future changes due to climate change or other causes.
- No requirements on <u>how</u> to assess climate change
- HCP Handbook: HCP should consider the implications of climate change effects on the HCP's conservation strategy and its ability to fully offset the impacts of the taking.
 - Analyze potential effects of climate change on **covered species**
 - Anticipate climate change effects and address them in the conservation strategy
 - Use adaptive management process to monitor and address climate change effects
 - Consider climate change effects in changed circumstances

Climate Change in HCPs: Analyzing Effects

- Increases the HCP's durability to help justify the permit duration
- Focus on what stressors effect covered species and their habitats:
 - What climatic variables are covered species sensitive to?
 - How might these climate variables change in future climates?
 - Will these changes have indirect effects important to species?
- Tools for analyzing effects
 - Future temperature and precipitation projections
 - Vulnerability analyses for covered species
 - Conceptual models with effects pathways
 - Habitat distribution models
 - Population models

Climate Change in the GRHCP

Climate Change Effects on Covered Species

Covered Species	High Flow Events	Sea Level Rise	Drought	Temperature
False Spike	х		Х	Х
Guadalupe Fatmucket	Х		Х	Х
Guadalupe Orb	Х		Х	Х
Guadalupe Darter	Х		Х	Х
Eastern Black Rail	Х	Х	Х	Х
Whooping Crane	х	Х	Х	Х

- Ways to Address Climate Change in the GRHCP
 - Assess effects of climate change on covered species
 - Conservation measures that address resiliency towards climate change effects
 - Strong adaptive management and monitoring framework to track effectiveness and adjust as needed
 - Clear thresholds for changed (foreseeable) and unforeseen circumstances

DRAFT

TECHNICAL MEMORANDUM: CLIMATE CHANGE INFORMATION AND CLINA I E CHANGE INFORMATION AND RECOMMENDED APPROACHES IN THE GRHCP

Guadalupe River Habitat Conservation Plan

Technical Advisory Group Members

Dan Opdyke Chair of Committee Anchor QEA Water quality and hydromodeling

Cindy Loeffler Retired TPWD Texas Water Policy and HCPs

Webster Mangham Trinity River Authority Mussel Policy and River Authority operations

Ryan Smith Texas Nature Conservancy Texas water and ecosystems

Update on TAG Proceedings

- Provided comments on draft climate change information memo
- Provided comments on three draft memos describing proposed approaches to evaluate potential impacts to freshwater mussels, salamanders, and two bird species (Eastern Black Rail and Whooping Crane).
- Participated in meetings with GBRA, consultants, and USFWS to discuss these memos

Questions?

Email questions or comments to GRHCP@GBRA.org

- Nathan Pence Executive Manager of Environmental Science <u>npence@gbra.org</u>
- Chad Norris
 Deputy Executive Manager of Environmental Science
 <u>cnorris@gbra.org</u>
- Daniel Large HCP Director <u>dlarge@gbra.org</u>
- Jana Gray HCP Coordinator jgray@gbra.org

Input Session Overview

• Brainstorming session to generate ideas on potential conservation measures

GBRA.ORG

- Freshwater mussels
- Whooping Crane/Eastern Black Rail
- Guadalupe Darter
- In-person participants will split into 3 groups
- Virtual participants will use link provided in the "Chat" to enter the virtual room

"Potential Impact Pathways"

GBRA.ORG

Guadalupe Darter

- Stream Flow Variations - Changes in Water Quality

"Conservation Measures"

Avoidance and Minimization Measures

Avoidance measures "occur by siting and designing the project in a way that **AVOIDS** impacts to covered species."

Examples:

Seasonal restrictions Reduction of the extent of the covered activity

Minimization measures are "actions that will **REDUCE** the impacts of the taking that have been identified during the development of the HCP."

Examples: *Establishment of buffer zones Maintenance of habitat connectivity*

Mitigation Measures

Mitigation measures "must be based on the biological needs of covered species and should be designed to **OFFSET** the impacts of the take from the covered activities to the maximum extent practicable."

GBRA.ORG

Examples:

Restoration of a degraded habitat Land preservation Threat reduction Enhancement of habitat

