

Guadalupe-Blanco River Authority

Your Trusted Water Resource

Comprehensive Nutrient Data Collection to Establish Baseline Conditions

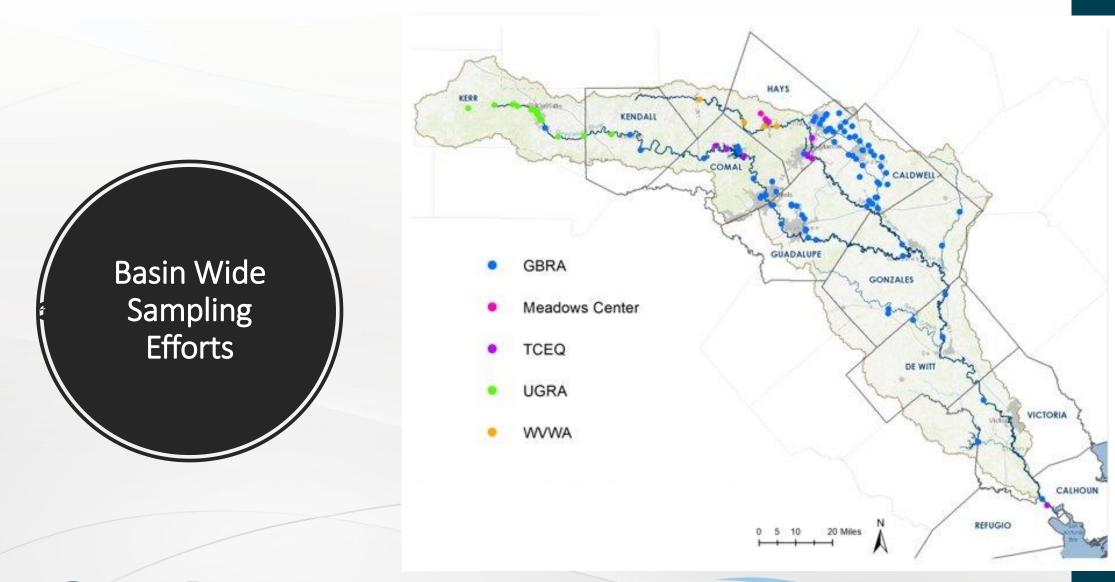
Elizabeth Edgerton, Natalie Hickman, and Jack Frank; GBRA Water Quality

Overview

Guadalupe-Blanco River Authority

?	What, Why, and How	
	Special Considerations – TP Sampling	
Q	Where – Site Locations	
!!	Next Steps	
#	Periphyton – What Is It?	
Q	Procedure Development & Implementation	
•	Final Thoughts	
G	BRA	

Why Focus on Nutrients?


- Nutrients in streams can lead to excess algal blooms and eutrophication
- Recurring topic in the media
 - Summertime algae blooms
- Utility but also an environmental stewards
 - Be proactive rather than reactive
- Inform conversation with data
 - Facts vs. Feelings
- Can't prioritize streams without robust data

Water Quality Data Collection

- Data collection began in the 1980s
- Joined CRP at inception
- WPP monitoring
- Limited sampling sites
 - Funding
 - Personnel

Project Development

- Priorities in Data Collection:
 - Upstream and downstream of point source discharges
 - Sample springs where able
 - Septic and other NPS
- Hill Country Sampling
 - Kerr County
 - Later added San Marcos River

- Total Phosphorus
- Nitrate
- Nitrite
- Total Kjeldahl Nitrogen
- Chlorophyll a/ Pheophytin
- Field data using YSI probe
 - Temperature,
 DO, pH, conductivity, salinity

Project Development

Standard Operating Procedure (SOP)

• Developed to ensure data integrity and continuity between partners

Project Partners

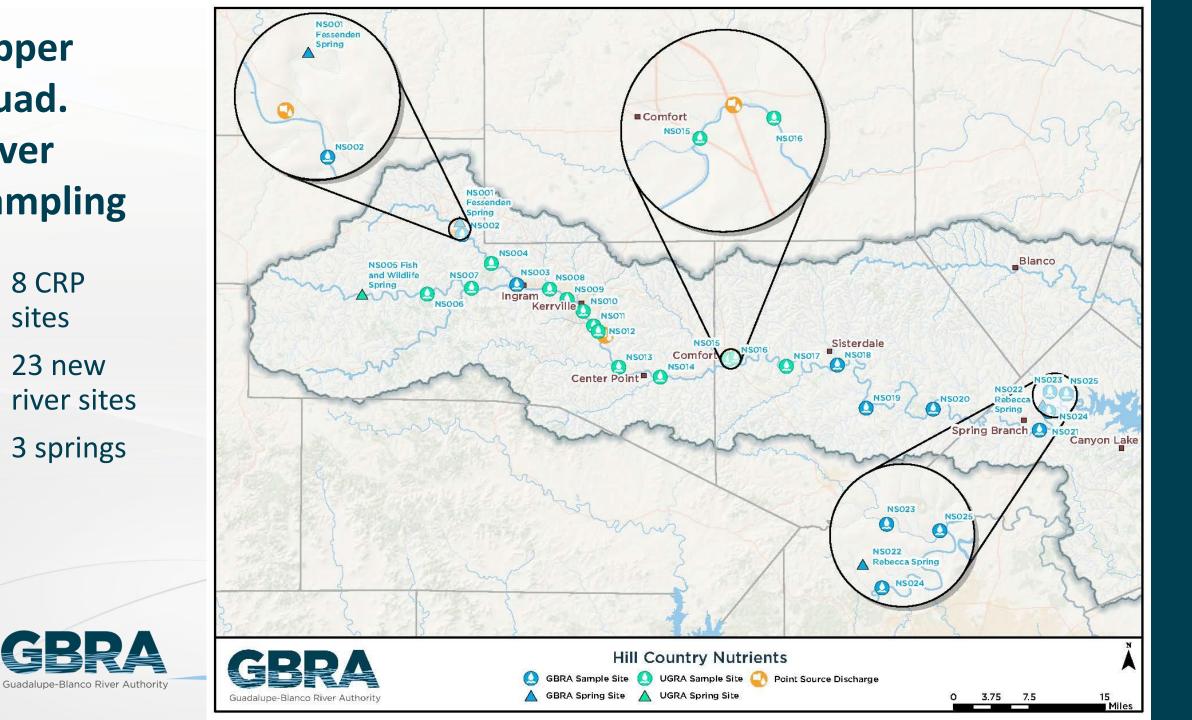
- UGRA
- GBRA Lab
- Back Up Lab

Discussions with TCEQ throughout later planning process

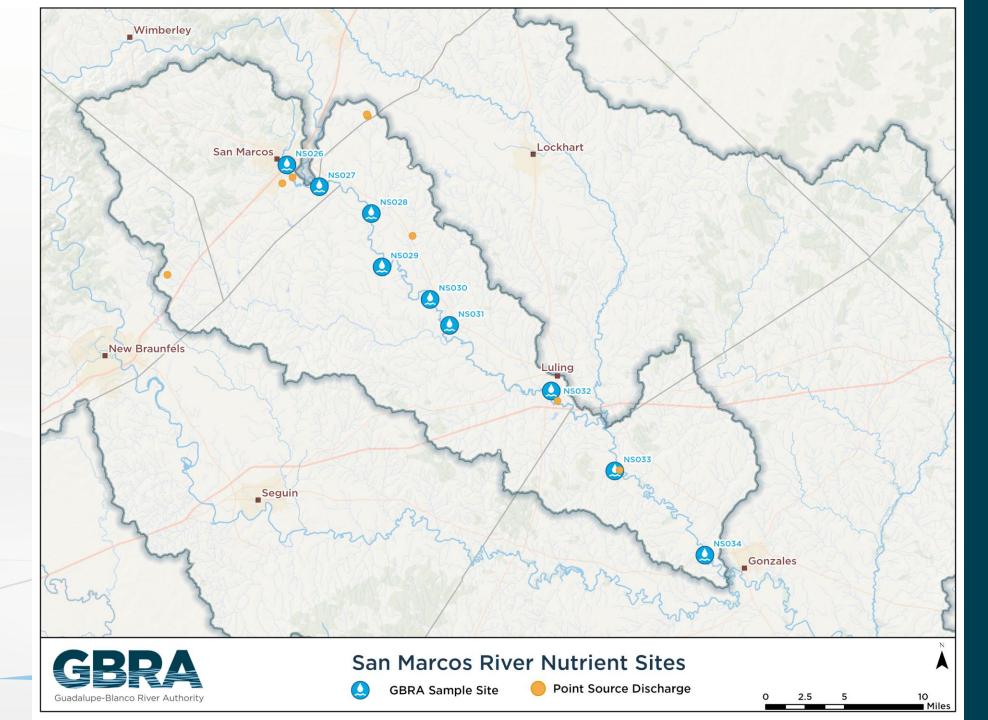
- Useful insights and suggestions
- Periphyton method

Special Considerations: TP

- Total Phosphorus a limiting nutrient for algae growth
- Current lower detection limit in GBRA lab: 0.02 mg/L
- Data below the LOQ not reportable to TCEQ


Guadalupe River at FM 474 in Kendall County

6/5/2019	11:07	Total	Phosphorus	< 0.020	mg/L
9/9/2019	10:48	Total	Phosphorus	< 0.020	mg/L
12/16/2019	11:02	Total	Phosphorus	< 0.020	mg/L
3/2/2020	10:28	Total	Phosphorus	< 0.020	mg/L
6/1/2020	11:17	Total	Phosphorus	0.033	mg/L
10/28/2020	10:15	Total	Phosphorus	< 0.020	mg/L
2/10/2021	13:00	Total	Phosphorus	< 0.020	mg/L
5/10/2021	13:15	Total	Phosphorus	< 0.020	mg/L
7/14/2021	12:01	Total	Phosphorus	< 0.020	mg/L
10/26/2021	11:48	Total	Phosphorus	< 0.020	mg/L
1/19/2022	11:15	Total	Phosphorus	< 0.020	mg/L
4/21/2022	11:34	Total	Phosphorus	< 0.020	mg/L
7/14/2022	10:35	Total	Phosphorus	< 0.020	mg/L
11/21/2022	11:14	Total	Phosphorus	< 0.020	mg/L
2/21/2023	10:30	Total	Phosphorus	< 0.020	mg/L
5/24/2023	11:53	Total	Phosphorus	0.02	mg/L
8/24/2023	13:10	Total	Phosphorus	0.032	mg/L
10/9/2023	11:23	Total	Phosphorus	0.028	mg/L


Upper Guad. **River** Sampling

- 8 CRP sites
- 23 new • river sites
- 3 springs •

San Marcos River Sampling

- 3 CRP sites
- 6 new sites

Select Hill Country Sites

0.00678 mg/L

0.01231 mg/L

0.00899 mg/L

0.00254 mg/L

0.00870 mg/L

0.00724 mg/L

0.00862 mg/L

0.01362 mg/L

0.00994 mg/L

0.01207 mg/L

0.01471 mg/L

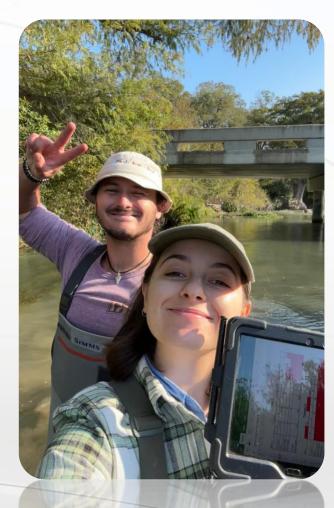
0.00901 mg/L

10/24/24 NS Guadalupe River at 474 CRPQ 11/14/24 NS Guadalupe River at 474 CRPQ 12/17/24 NS Guadalupe River at 474 CRPQ 10/22/24 NS Guadalupe River at Bear Creek Road 11/12/24 NS Guadalupe River at Bear Creek Road 12/3/24 NS Guadalupe River at Bear Creek Road 10/24/24 NS Guadalupe River at Center Point Road 11/14/24 NS Guadalupe River at Center Point Road 12/4/24 NS Guadalupe River at FM 3351

12/11/24 NS Guadalupe River at FM 3351

Final Thoughts

- Currently a pilot project
 - Assess results throughout the year and possibly continue sampling
- Limitations in sampling
 - TP data that is below the LOQ for our lab method
- Considering a lab study that could lower the LOQ
 - Use current method?
 - Look at new methods?



Qualitative Periphyton Study in the Texas Hill Country

Natalie Hickman & Jack Frank

GBRA Water Quality Technicians

Understanding Periphyton

- What is Periphyton?
 - A complex mixture of algae (macroalgae and microalgae), moss, and other microbes attached to submerged surfaces.
- Why is it Important?
 - Acts as a nutrient sink
 - Indicators of water quality and nutrient dynamics
 - Helps understand stream health and ecosystem function
- Types Sampled:
 - Macroalgae
 - Microalgae
 - Moss

Study Design

- Sampling Protocol
 - The Transect Method
- Adapted from Utah State University protocols:
 - Three diagonal (zig-zag) transects per stream site
 - 6 uniform points per transect → 18 observations per station
 - "Big toe" method used to assess periphyton cover
- Micro-TI, Macro-CI, and Moss-CI cover index calculated

- Startup:
 - First trial run
 - Coordination with TCEQ
 - Site scouting for optimal locations
 - Considerations: stream width and depth, canopy cover, dominant substrate type, habitat type, safe to access

Field Procedure

- At Each Observation Point:
 - % Coverage of:
 - Macroalgae
 - Microalgae
 - Moss
 - Thickness of microalgae (Index 0–5; includes 0.5 for slimy substrate)
 - Longest length of macroalgae strands (mm)
 - Periscope used in deep/turbid water
- Field Considerations:
 - Safe Access
 - Presence of Rocks
 - Canopy Cover
 - Secchi and Sonde data

Station ID:	dalupe-Dianco	River Author	ity (GBRA) G	Qualitative Pe	riphyton surv	ey (updated	
	NS001	Date:	Tir	ne:			
Description:	Fessenden S	Spring					
Observers:							
		Tran	sect 1				
Start:		End:		Length:			
	1	2	3	4	5	6	
Location:							
Moss							
Macroalgae							
Microalgae							
Macroalgae (mm):							
,		Tran	sect 2				
Start:		End:		Length:		1	
	1	2	3	4	5	6	
Location:					· ·		
Moss							
Macroalgae							
Microalgae Longest							
Macroalgae (mm):							
().		Tran	sect 3				
Start:		End:		Length:	0		
	1	2	3	4	5	6	
Location:							
Moss							
Macroalgae							
-							
Microalgae							
Macroalgae (mm):							
().		Densi	<u>ometer</u>				
	LB	CL	CR	BB			
		- UL	00				
		No	<u>ites</u>				

Measurement & Scoring

- Scoring Metrics:
 - Moss coverage
 - Stringy (macro)algae coverage
 - Slimy (micro)algae thickness
 - Length of longest algae strands
- Scores averaged to create an overall stream health profile.

Sampling Reference Notes

General Setup and Sampling

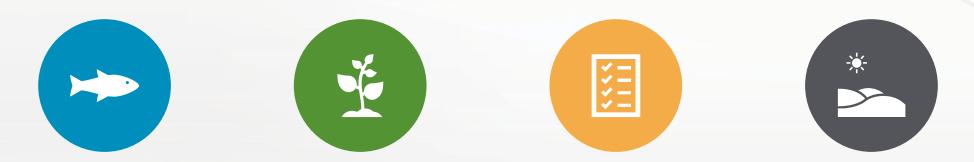
3 diagonal transects at 70 degree angle from shore sample 6 locations equally spaced along tape measure look for rock nearest to big toe at sample location (even if tiny) if substrate is too small or too large, view in-situ

Scale used for Moss and Macroalgae indices

0 = no moss or macroalgae present 1 = some (but <5% coverage) moss or macroalgae present 2 = 5 to 25% cover of substratum by moss or macroalgae 3= >25 to 50% cover of substratum by moss, or macroalgae present 4 =>50 to 75% cover of substratum by moss or macroalgae 5 =>75 to 100% cover of substratum by moss or macroalgae

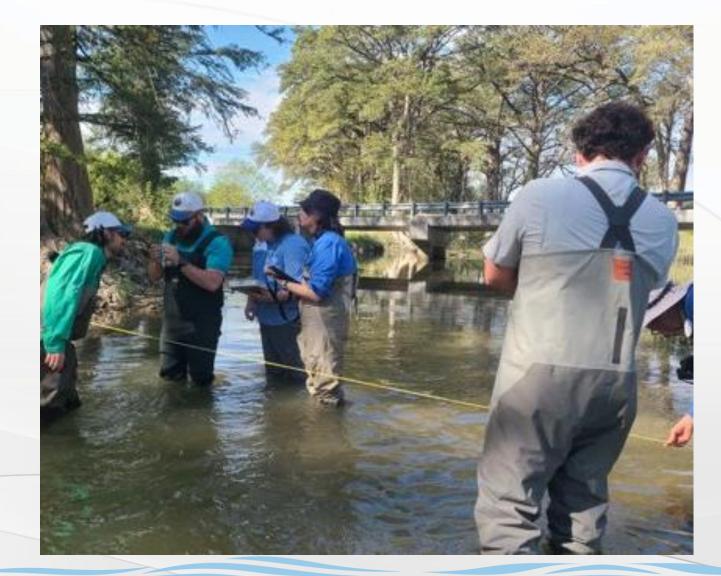
Scale used for Microalgae index

- 0 = substrate is rough with no apparent growth
- 0.5 = substrate is slimy, but biofilm is not visible
- 1 = a thin layer of microalgae is visible
- 2 = accumulation of microalgae to a thickness of 0.5 to 1 mm
- 3 = accumulation of microalgae to a thickness of 1 to 5 mm
- 4 = accumulation of microalgae to a thickness of 5 to 20 mm
- 5 = accumulation of microalgae to a thickness > 20 mm


Adjustments

- Focused on safe/practical sampling areas (e.g., shallow, rocky areas away from bridges)
- Rotating field team for consistency
- Modified approach for tough terrain (e.g., no rock lifting when not feasible)

What We've Gained



RICHER UNDERSTANDING OF STREAM ECOSYSTEMS BETTER INSIGHT INTO NUTRIENT FLOW AND ALGAE DYNAMICS CONSISTENT DATA COLLECTION TECHNIQUES FOUNDATION FOR ONGOING MONITORING IN THE HILL COUNTRY

Thank you!

- Elizabeth Edgerton
- Water Quality Program Supervisor
- <u>eedgerton@gbra.org</u>
- Natalie Hickman
- Water Quality Technician
- <u>nhickman@gbra.org</u>
- Jack Frank
- Water Quality Technician
- jfrank@gbra.org

